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ABSTRACT
The 3Sigma cluster scheduling system uses job runtime his-
tories in a new way. Knowing how long each job will execute
enables a scheduler to more effectively pack jobs with diverse
time concerns (e.g., deadline vs. the-sooner-the-better) and
placement preferences on heterogeneous cluster resources.
But, existing schedulers use single-point estimates (e.g., mean
or median of a relevant subset of historical runtimes), and we
show that they are fragile in the face of real-world estimate
error profiles. In particular, analysis of job traces from three
different large-scale cluster environments shows that, while
the runtimes of many jobs can be predicted well, even state-
of-the-art predictors have wide error profiles with 8–23% of
predictions off by a factor of two or more. Instead of reduc-
ing relevant history to a single point, 3Sigma schedules jobs
based on full distributions of relevant runtime histories and
explicitly creates plans that mitigate the effects of anticipated
runtime uncertainty. Experiments with workloads derived
from the same traces show that 3Sigma greatly outperforms
a state-of-the-art scheduler that uses point estimates from a
state-of-the-art predictor; in fact, the performance of 3Sigma
approaches the end-to-end performance of a scheduler based
on a hypothetical, perfect runtime predictor. 3Sigma reduces
SLO miss rate, increases cluster goodput, and improves or
matches latency for best effort jobs.
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1 INTRODUCTION
Modern cluster schedulers face a daunting task. Modern clus-
ters support a diverse mix of activities, including exploratory
analytics, software development and test, scheduled content
generation, and customer-facing services [20]. Pending work
should be mapped to the heterogeneous resources so as to
satisfy deadlines for business-critical jobs, minimize delays
for interactive best-effort jobs, maximize efficiency, and so
on. Cluster schedulers are expected to make that happen.

Knowledge of pending jobs’ runtimes has been identified
as a powerful building block for modern cluster schedulers [4,
13, 28]. With it, a scheduler can pack jobs more aggressively
in a cluster’s resource assignment plan [4, 13, 28, 32], such as
by allowing a latency-sensitive best-effort job to run before a
high-priority batch job provided that the priority job will still
meet its deadline. Runtime knowledge allows a scheduler to
determine whether it is better to start a job immediately on
suboptimal machine types with worse expected performance,
wait for the jobs currently occupying the preferred machines
to finish, or to preempt them [2, 28]. Exploiting job runtime
knowledge leads to better, more robust scheduler decisions
than relying on hard-coded assumptions.

In most cases, the job runtime estimates are based on pre-
vious runtimes observed for similar jobs (e.g., from the same
user or by the same periodic job script)—a point estimate
(e.g., mean or median) is determined from the relevant his-
tory. When such estimates are accurate, schedulers relying
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Figure 1: Comparison of 3Sigma with three other sched-
uling approaches w.r.t. SLO (deadline) miss rate, for a mix
of SLO and best effort jobs derived from the Google clus-
ter trace [20] on a 256-node cluster. (Details in §5) 3Sigma,
despite estimating runtime distributions online with im-
perfect knowledge of job classification, approaches the per-
formance of a hypothetical scheduler using perfect run-
time estimates (PointPerfEst). Full historical runtime distri-
butions and mis-estimation handling helps 3Sigma outper-
form PointRealEst, a state-of-the-art point-estimate-based
scheduler (detailed in §2.2 ). The value of exploiting runtime
information,whendonewell, is confirmed by comparison to
a conventional priority-based approach (Prio).

on them outperform those using other approaches. Further,
previous research [28] has shown that these schedulers can
be robust to a reasonable degree of runtime variation (e.g.,
up to 50%).

However, we find that the estimate errors, while expected
in large, multi-use clusters, cover an unexpectedly larger
range. Applying a state-of-the-art ML-based predictor [27]
to three real-world traces, including the well-studied Google
cluster trace [20] and new traces from data analysis clus-
ters used at a hedge fund and a scientific site, shows good
estimates in general (e.g., 77–92% within a factor of two of
the actual runtime and most much closer). Unfortunately,
8–23% are not within that range, and some are off by an
order of magnitude or more. Thus, a significant percentage
of runtime estimates will be well outside the error ranges
previously reported.
Worse, we find that schedulers relying on runtime esti-

mates cope poorly with such error profiles. Comparing the
middle two bars of Fig. 1 shows one example of how much
worse a state-of-the-art scheduler does with real estimate
error profiles as compared to having perfect estimates.

This paper describes the 3Sigma cluster scheduling system,
which uses all of the relevant runtime history for each job
rather than just a point estimate derived from it. Instead, it
uses expected runtime distributions (e.g., the histogram of
observed runtimes), taking advantage of the much richer
information (e.g., variance, possible multi-modal behaviors,
etc.) to make more robust decisions. The first bar of Fig. 1
illustrates 3Sigma’s efficacy, showing that it approaches the
hypothetical case of a scheduler with perfect point estimates.

By considering the range of possible runtimes for a job, and
their likelihoods, 3Sigma can explicitly consider the various
potential outcomes from each possible plan and select a plan
based on optimizing the expected outcome. For example, the
predicted distribution for one job might have low variance,
indicating that the scheduler can be aggressive in packing it
in, whereas another job’s high variance might suggest that
it should be scheduled early (relative to its deadline). 3Sigma
similarly exploits the runtime distribution to adaptively ad-
dress a significant problem with point over-estimates, which
may suggest that the scheduler avoid scheduling a job based
on the likelihood of missing its deadline.

Full system and simulation experiments with production-
derived workloads demonstrate 3Sigma’s effectiveness. Us-
ing its imperfect but automatically-generated history-based
runtime distributions, 3Sigma outperforms both a state-of-
the-art point-estimate-based scheduler and a priority-based
(runtime-unaware) scheduler, especially formixes of deadline-
oriented jobs and latency-sensitive jobs on heterogeneous
resources. 3Sigma simultaneously provides higher (1) SLO
attainment for deadline-oriented jobs and (2) cluster goodput
(utilization). In most cases, 3Sigma performs nearly as well
as the hypothetical system with perfect estimates.
This paper makes four primary contributions. First, it

exposes a major problem with applying recent runtime-
estimate-guided schedulers to large, multi-use clusters: sig-
nificant numbers of bad estimates including some large out-
liers. Second, it describes an approach, which leverages full
runtime distributions, that solves this problem as well as
an implemented scheduling system (3Sigma) based on this
solution. Third, it describes new core scheduler mechanisms,
also implemented in 3Sigma, needed to make distribution-
based scheduling efficient and scalable—as well as to mitigate
the effects of outliers falling outside the observed history.
Fourth, it reports on end-to-end experiments on a real 256-
node cluster, showing that 3Sigma robustly exploits run-
time distributions to improve SLO attainment and best-effort
performance, dealing gracefully with the complex runtime
variations seen in real cluster environments.

2 BACKGROUND AND RELATEDWORK
Cluster consolidation in modern datacenters forces cluster
schedulers to handle a diverse mix of workload types, re-
source capabilities, and user concerns [20, 23, 32]. One result
of this has been a resurgence in cluster scheduling research.
This section focuses on work related to using information
about job runtimes to make better scheduling decisions.

Accurate job runtime information can be exploited to sig-
nificant benefit in at least three ways at schedule-time.

1) Clusterworkloads are increasingly amixture of business-
critical production jobs and best-effort engineering/analysis
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jobs. The production jobs, often submitted by automated sys-
tems [11, 25], tend to be resource-heavy and to have strict
completion deadlines [4, 13]. The best-effort jobs, such as ex-
ploratory data analytics and software development/debugging,
while lower priority, are often latency-sensitive. Given run-
time estimates, schedulers can more effectively pack jobs, si-
multaneously increasing SLO attainment for production jobs
and reducing average latency for best-effort jobs [4, 13, 28].
2) Datacenter resources are increasingly heterogeneous,

and some jobs behave differently (e.g., complete faster) de-
pending upon which machine(s) they are assigned to. Maxi-
mizing cluster effectiveness in the presence of jobs with such
considerations can be more effective when job runtimes are
known [2, 28, 36].

3) Many parallel computations can only run when all tasks
comprising them are initiated and executed simultaneously
(gang-scheduling) [17, 18]. Maximizing resource utilization
while arranging for such bulk resource assignments is easier
when job runtimes are known.

Thus, many recent systems [4, 8, 9, 13, 28] make use of
job runtime estimates provided by users or predicted from
previous runs of similar jobs. Such systems assume that the
predictions are accurate, and we find that they may face
severe performance penalties if a significant percentage of
runtime estimates is outside a relatively small error range.
Worse, we find that this is to be expected in many environ-
ments.

2.1 Runtime variation and uncertainty
Analysis of job runtime predictability in production environ-
ments reveals that consistently accurate predictions should
not be expected. Specifically, this section discusses observa-
tions from our analysis of job traces from three environments
(details in §5): (1) analysts at a quantitative HedgeFund run-
ning a collection of exploratory and production financial an-
alytics jobs on two computing clusters in 2016; (2) scientists
at Los Alamos National Laboratory running data analysis,
smaller-scale simulation, and development/test jobs on the
Mustang capacity cluster between 2011 and 2016; (3) Google:
the Google cluster trace[21] released in 2011 that has been
used extensively in the literature. We observe the following:

First, job runtimes are heavy-tailed (longest jobs are much
longer than others), suggesting that at least a degree of un-
predictability should be expected. Heavy tails can be seen in
the distribution of runtimes for each workload (Fig. 2(a)).

Second, job runtimes within related subsets of jobs exhibit
high variability. We illustrate this with distributions of the
Coefficient of Variation (CoV; ratio of standard deviation to
mean), within each subset clustered by a meaningful feature,
such as user id (Fig. 2(b)) or quantity of resources requested

(Fig. 2(c)). CoV values larger than one (the CoV of an expo-
nential distribution) is typically considered high variability.
Large percentages of subsets in each of the workloads have
high variability, with more occurring in the HedgeFund and
Mustang workloads than in the Google workload.
Third, we evaluate the quality of the estimates from a

state-of-the-art predictor and confirm that a significant per-
centage of estimates are off by factor of two or more. For this
evaluation, we generated a runtime estimate for each job
and compared with the actual observed runtime in the trace.
We use JVuPredict, the runtime predictor module from the
recent JamaisVu [27] project to generate runtime estimates.
JVuPredict produces an estimate for each job by categorizing
jobs (historical and new) using common attributes, such as
submitting user or resources requested, and choosing the
estimate from the category that has produced the best esti-
mates in the past. Smith et al. [24] describe a similar scheme
and its effectiveness for parallel computations.

Fig. 2(d) is the histogram of percent estimate error. For all
workloads, most job runtimes are estimated reasonably (e.g.,
±25% error), but few are perfect. Worse, in each workload, a
substantial fraction of jobs are over- or under-estimated by
a large margin, well outside the range of errors considered
in previous works [9, 28]. Even for the Mustang workload,
which has large proportion of jobs with very accurate (±5%
error) estimates, at least 23% jobs have estimate error larger
than 95% and substantial amount of jobs have estimate error
less than -55%. The HedgeFund trace has the fewest jobs with
very accurate estimates and many jobs in both tails of the
distribution. The Google cluster trace has fewer jobs in the
tails of the distribution, but still has 8% of jobs mis-estimated
by a factor of two or more.

Overall, we conclude that multi-purpose cluster workloads
exhibit enough variability that even very effective predic-
tors will have more and larger mis-estimates than has been
assumed in previous research on schedulers that use infor-
mation about job runtimes.

2.2 Mis-estimate mitigation strategies
The scheduling research community has explored techniques
to mitigate the effects of job runtime mis-estimates, which
can significantly hamper a scheduler’s performance.
Some environments (e.g. [13, 33]) use conservative over-

provisioning to toleratemis-estimates by providing the sched-
uler more flexibility. Naturally, this results in lower cluster
utilization, but does reduce problems. Morpheus [13] re-
assigns resources to jobs that require more resources at run-
time. Not all applications are designed to be elastic, though,
and some cannot make use of additional resources.
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Figure 2: Analyses of clusterworkloads from three different environments: (a) Distribution of job runtimes (b) Distribution of
Coefficient of Variation for each subset grouped by user id (c) Distribution of Coefficient of Variation for each subset grouped
by amount of resources requested (d) Histogram of Estimate Errors comparing runtime estimates from the state-of-the-art
JVuPredict predictor and actual job runtimes. Estimate Error values computed by estimate−actual

actual × 100. Each datapoint is a
bucket representing values within 5% of the nearest decile. The “tail” datapoint includes all estimate errors > 95%. Cluster:SC.
Workload:Google_E2E, DFT_E2E, MUSTANG_E2E

Preemption can be applied to address some issues arising
from mis-estimates, like it is used in many systems to re-
assign resources to new high-priority jobs, either by killing
(e.g., in container-based clusters [33]) or migrating (e.g., in
VM-based systems [35]) jobs.

Various other heuristics have been used to mitigate the
effects of mis-estimates. [26] addresses mis-estimations of
runtimes for HPC workloads by exponentially increasing
under-estimated runtimes and then reconsidering schedul-
ing decisions. Other systems [3, 15] use the full runtime
distribution to compare the expected benefits of scheduling
jobs. The “stochastic scheduler” [22] uses a conservative run-
time estimate by padding the observed mean by one or more
standard deviations. Such heuristics help (3Sigma borrows
the first two), but do not eliminate the problem.

2.3 Distribution-based scheduling
Are estimates of job runtime distributions more valuable than
point estimates (e.g., estimates of the average job runtime)
for cluster scheduling? Intuitively, the distribution provides
strictly more information to the scheduler than the point
estimate. A simple example below illustrates the point. Sup-
pose two jobs arrive to be scheduled on a toy cluster, and
the resources are sufficient to execute only one job at a time.
Further, one job is an SLO job with a 15 minute deadline,
and the other is a best-effort (BE) job. The objective of the
scheduler is to minimize SLO violations, while also minimiz-
ing BE job latency. The key question is which job should be
executed first?
To answer that question, the scheduler naturally needs

more information. Let’s start by assuming a point-estimate
based scheduler. In our example, imagine that the average
runtime of jobs like each of these is known to be 5 minutes.
Because the deadline window of 15 minutes is 50% longer
the sum of the two point estimates (10 minutes), one might
assume that scheduling the BE job first would be relatively

safe, which would allow the BE job to start early while still
respecting the deadline of the SLO job.

Consider, instead, a distribution-based scheduler, and let’s
imagine two cases: A and B. In case A, the runtime distribu-
tion of each job (SLO and BE) is uniform over the interval 0
to 10 minutes. The average runtime is still 5 minutes, but the
scheduler is able to calculate that the probability of the SLO
job missing its deadline would be 12.5% if the BE job were
scheduled first. Hence, scheduling the SLO job first may be
desirable. For case B, in contrast, imagine that the distribu-
tions are uniform over the interval 2.5 to 7.5 minutes. Again,
the average runtime is 5 minutes, but now the scheduler may
safely schedule the BE job first, because even if both jobs
execute with worst-case runtimes, the SLO job will finish in
the allotted 15 minute window.
The key observation is that the distributions enable the

scheduler to make better-informed decisions; knowing just
the average job runtime is not nearly as valuable as know-
ing whether jobs are drawn from distribution A or B. Two
caveats should be mentioned here. First, we implied in this
discussion that the SLO deadline is strict; in some environ-
ments, this may not be true, and some weighting between
BE job start time and SLO miss rate may be desirable. Sec-
ond, the discussion assumed that the distribution supplied
to the scheduler is accurate. In practice, the distribution will
have to be estimated in some way—likely from historical job
runtime data—and may differ from observed behavior. We
address both of these topics later and show that estimated
distributions are effective for the workloads studied.

3 DISTRIBUTION-BASED SCHEDULING
In this section, we describe the mechanisms that enable
schedulers to use the full runtime distribution, as opposed
to point estimates. Any scheduler wanting to take advan-
tage of runtime information can use the following generic



3Sigma: Distribution-based cluster scheduling for runtime uncertainty EuroSys ’18, April 23–26, 2018, Porto, Portugal

scheduling algorithm. The scheduler first generates all possi-
ble placement options (resource_type , start_time), each of
which has an associated utility. The scheduler chooses to run
the set of jobs which both maximize overall sum of utility
and fit within the available resources.

Using point runtime estimates, we can find the best sched-
ule using basic optimization techniques (e.g. MILP). However,
with runtime distributions, we have a much larger state-
space to consider. For each running job, there are many
possible outcomes. Naively considering all scenarios easily
makes this problem intractable. Instead of considering each
option, we use the expected utility per job and expected re-
source consumption over time. This section describes how
both of these values are calculated.

3.1 Valuation of scheduling options
For each job, there is a set of possible placement options. The
placement of the job dictates the job’s final completion time,
and consequently, it’s usefulness or utility. A scheduler needs
to place jobs in a way that maximizes overall utility. This
section describes how to associate job placement options
with the utility of the job.

Utility. To make informed placement decisions, a sched-
uler must quantify its options relative to the success metric
the job cares about. We use utility functions to represent a
mapping from the domain of possible job placement options
and completion times to the potential utility of the job. We
assume that a cluster administrator or an expert user will be
able to define the utility function on a job-by-job basis. How-
ever, in this work, we model the utility of SLO and latency
sensitive jobs separately. The utility curve used for SLO jobs
is shown in Fig. 3(a). This curve models a job with constant
utility if completed within the deadline, and zero utility if
completed after the deadline. On the other hand, we repre-
sent latency sensitive jobs as having a linearly decreasing
function over time to declare preference to complete faster.

Expected utility. For each placement option (resource_type ,
start_time), a scheduler computes the expected utility of a
job using the runtime distribution. The expected utility is
calculated as the sum of utilities for each runtime t , weighted
by the probability that the job runs for t :

E[U (startTime)] =
∫ max(runtime)

0
U (startTime+ t)PDF (t)dt (1)

whereU (t) is utility function for placement in terms of com-
pletion time, and PDF is the probability density function for
the job runtime. Fig. 3 provides a simple example.

3.2 Expected resource consumption
To calculate the set of available resources over time, we need
to estimate the resource usage of currently running jobs
over time. The use of point estimates for runtimes makes an

implicit assumption that resource consumption is determin-
istic. In contrast, using full distributions acknowledges that
resource consumption is, in fact, probabilistic for jobs with
uncertain duration. Thus, we calculate the expected resource
consumption, similarly to expected utility (§3.1).

The expected resource consumption of a job at time-slice
t is dependent on the probability that the job still uses those
resources at (i.e., hasn’t completed by) time t. Given PDF(t)—
the probability density function of a job’s runtime, CDF(t)
captures the probability with which the job will complete in
at most t time units. The inverse CDF, or 1 −CDF (t) then
captures the probability with which the job will complete
in at least t time units, which is also the probability the job
still uses the resources at time t . Thus, expected resource
consumption at time t equals to the job’s resource demand
multiplied by 1 −CDF (t).
For running jobs, 3σSched updates the runtime distri-

bution, as it has additional information, namely the fact
that the job has been running for some elapsed_time. This
enables us to dynamically compute a conditional probabil-
ity density function for the job’s expected runtime P(t |t ≥
elapsed_time). This probability update simply renormalizes
the original CDForiginal(t) and computes the updated proba-
bility distribution as follows:

1 −CDFupdated(t) =
1 −CDForiginal(t)

1 −CDForiginal(elapsed_time)
(2)

The amount of available resources in the cluster at time
t is then computed by subtracting the aggregate expected
resource consumption at time t from the full cluster capacity.

4 DESIGN AND IMPLEMENTATION
This section describes the architecture of 3Sigma (Fig. 4).
3Sigma replaces the scheduling component of a cluster man-
ager (e.g. YARN). The cluster manager remains responsible
for job and resource life-cycle management.

Job requests are received asynchronously by 3Sigma from
the cluster manager (Step 1 of Fig. 4). As is typical for such
systems, the specification of the request includes a number
of attributes, such as (1) the name of the job to be run, (2) the
type of job to be run (e.g. MapReduce), (3) the user submitting
the job, and (4) a specification of the resources requested.

The role of the predictor component, 3σPredict, is to pro-
vide the core scheduler with a probability distribution of the
execution time of the submitted job. 3σPredict (§4.1) does
this by maintaining a history of previously executed jobs,
identifying a set of jobs that, based on their attributes, are
similar to the current job and deriving the runtime distribu-
tion the selected jobs’ historical runtimes (Step 2 of Fig. 4).

Given a distribution of expected job runtimes and request
specifications, the core scheduler, 3σSched decideswhich jobs
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to place on which resources and when. The scheduler evaluates
the expected utility of each option (§3.1) and the expected
resource consumption and availability over the scheduling
horizon (§3.2). Valuations and computed resource capacity
are then compiled into an optimization problem (§4.3), which
is solved by an external solver. 3σSched translates the solu-
tion into an updated schedule and submits the schedule to
the cluster manager (Step 3 of Fig. 4). On completion, the
job’s actual runtime is recorded by 3σPredict (along with the
attribute information from the job) and incorporated into
the job history for future predictions (Step 4 of Fig. 4).

In this section, we detail how 3σPredict estimates runtime
distributions (§4.1), how 3σSched handles mis-estimation
(§4.2), and the details of the core scheduling algorithm (§4.3).

4.1 Generating runtime distributions
For each incoming job, 3σPredict provides 3σSched with an
estimated runtime distribution. 3σPredict generates this dis-
tribution using a black-box approach for prediction. It does
not require user-provided runtime estimates, knowledge of
job structures, or explicit declarations of similarity to spe-
cific previous jobs. However, it does assume that, even in
multi-purpose clusters used for a diverse array of activities,
most jobs will be similar to some subset of previous jobs.

3σPredict associates each jobwith set of features. A feature
corresponds to an attribute of the job (e.g., user, program
name, submission time, priority, resources requested, and
etc.). Attributes can be combined to form a single feature as

well (e.g., user and submission time). 3σPredict tracks job
runtime history for each of multiple features, because no
single feature is sufficiently predictive for all jobs.
3σPredict associates the new job with historical job run-

times with the same features. Because no single feature is
always predictive, 3σPredict generates multiple candidate
distributions for each job. For example, one candidate distribu-
tion may consist of runtimes of jobs submitted a single user.
A second candidate distribution may consist of runtimes of
jobs submitted with the same job name.
3σPredict selects one candidate distribution to send to

3σSched. To make this decision, 3σPredict compares each
distribution’s ability to make accurate point estimates. For
a given candidate distribution, 3σPredict makes point esti-
mates in multiple ways as different estimation techniques
will be more predictive for different distributions. Specifi-
cally, 3σPredict uses four estimation techniques: (a) average,
(b) median, (c) rolling (exponentially weighted decay with
α = 0.6), (d) average of X recent job runtimes. 3σPredict
tracks the accuracy of each feature-value:estimator pair,
which we refer to as an “expert", using the normalized mean
absolute error (NMAE) of past estimates. It designates the
runtime distribution from the expert with the lowest NMAE
as the distribution estimate of the job.

3σPredict does not make any assumption about the shape
of the distribution. Instead, we use empirical distributions,
stored as a histogram of the runtimes for each group. Run-
times often exhibit uneven distributions (e.g. heavy-tailed,
multi-modal), so we use varying bucket widths to ensure
that the shape of the distribution is accurately modeled. We
dynamically configure bin sizes using a stream histogram
algorithm [1] with a maximum of 80 bins.

Scalability. Storing and querying the entire history of
runtimes of a datacenter is not scalable. 3σPredict employs
several sketching techniques to greatly reduce the memory
footprint. 3σPredict 1) uses a stream histogram algorithm [1]
to maintain an approximate histogram of runtimes, 2) com-
putes the average and rolling estimates and NMAE metric



3Sigma: Distribution-based cluster scheduling for runtime uncertainty EuroSys ’18, April 23–26, 2018, Porto, Portugal

for each expert in a streaming manner, and 3) computes the
median using recent values as a proxy for the actual median.
Using these techniques, 3σPredict provides effective runtime
distributions using constant memory, per feature-value.

4.2 Handling imperfect distributions
3σPredict estimates the empirical distribution of a job using
the history of previously executed jobs. In practice, the es-
timated runtime distribution is imperfect. Not all jobs have
sufficient history to produce a representative distribution.
The runtimes of recurring jobs will also evolve over time
(e.g. different input data, program updates). 3σSched uses
the following mitigation strategies to tolerate error in the
estimated runtime distribution.

4.2.1 Under-estimate handling. Distribution schedulers
encounter under-estimates when a job runs longer than
all historical job runtimes provided in the distribution. An
under-estimate can cause a queued job waiting for the busy
resource to starve or miss its deadline. To mitigate this, when
the elapsed time of the job reaches the maximum observed
runtime from the distribution, 3σSched exponentially incre-
ments the estimated finish time by 2t cycles, starting with
t = 0 in similar fashion to [26]. Exponential incrementing
(exp-inc) avoids over-correcting for minor mis-predictions.
As 3σSched learns that the under-estimate is more signifi-
cant, it updates the runtime estimate by progressively longer
increments. Note that under-estimates in 3σSched are much
more rare compared to using a single point estimate. Point
estimate schedulers encounter under-estimates when a job
runs longer than the point estimate, whereas 3σSched en-
counters under-estimates when a job runs longer than all
historical job runtimes.

4.2.2 Over-estimate handling. 3σSched encounters over-
estimates when all historical runtimes are greater than the
time to deadline. In this case, the expected utility is zero,
leading the scheduler to not see any benefit from spending
resources on the job. 3σSched would prefer to keep resources
idle, rather than scheduling a jobwith zero utility. Tomitigate
the effects of over-estimates, 3σSched proactively changes
the utility functions of SLO jobs to degrade gracefully. Instead
of a sharp drop to zero utility (Fig. 3(a)), 3σSched uses a
linearly decaying slope past the deadline (Fig. 3(d)). This
way, the estimated utility of the job will be non-zero, even if
all possible completion times exceed the deadline. The post-
deadline utility will be lower than other SLO jobs submitted
with the same initial utility. 3σSched will therefore only
schedule seemingly impossible jobs when there are available
resources in the cluster.

4.2.3 Adaptive over-estimate handling. Enabling 3σSched’s
over-estimate handling comes at a cost. It increases the num-
ber of SLO jobs being tried in favor of completing lower pri-
ority jobs. For jobs that were not over-estimated, resources
are wasted. Ideally, we should only enable over-estimate han-
dling for jobs which have a reasonable probability of being
over-estimates.

3σSched leverages the user provided deadline for SLO jobs
in predicting the probability that a job is over-estimated. The
deadlines for high priority SLO jobs in production systems
are known to be correlated with its actual runtime, since they
are usually the result of profiled test runs or previous execu-
tions of the same jobs. Thus, 3σSched treats the time from
submission to deadline as a reasonable proxy for the upper-
bound of the runtime. It compares this upper-bound with
the runtime distribution and enables over-estimate handling
only if the likelihood of running for less than the upper-
bound is below a configured threshold. If the historical run-
time distribution implies that the job has no chance of meet-
ing its deadline, even if started immediately upon submission,
it is likely that the runtime distribution is skewed toward
over-estimation.

4.3 Scheduling algorithm
This section describes the details of the core scheduling al-
gorithm used by 3σSched. The discussion includes how we
adapt the generalized scheduling algorithm (§3) to cope with
approximate runtime distributions, the formulation of the
optimization problem, and algorithm extensions to support
preemption. We conclude the section by examining scalabil-
ity issues arising from the complexity of solving MILP.

4.3.1 Intuition. The high level intuition behind the sched-
uling algorithm is to bin-pack jobs, each represented as a
space-time rectangle in cluster resource space-time, where
the x-axis represents time and the y-axis enumerates the
resources available. Current time is represented as a point
on the x-axis. Placing a job further along the x-axis, away
from current time, is equivalent to deferring it for future
execution. This is useful when a job’s preferred resources
are busy, but are expected to free up in time to meet the job’s
deadline. Placing a job on different types of resources (mov-
ing its position along the y-axis) changes the shape of the
rectangles, as the resource type affects its required resources
and completion time. Each job can then be thought of as
an enumeration of candidate space-time rectangles, each
corresponding to a utility value. The job of the scheduler
is to maximize the overall utility of the placement decision
by making an instantaneous decision on (a) which jobs to
execute and which to defer, and (b) which placement options
to pick for those jobs. To achieve this, the scheduler must
have a way to formulate all jobs’ resource requests so that all
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pending requests may be considered in aggregate. 3σSched
achieves this by formulating jobs’ resource requests as Mixed
Integer Linear Programming instances.
The scheduler operates on a periodic cycle (at the granu-

larity of seconds, e.g., 1-2s), making a placement decision at
each cycle for all pending jobs. The schedule for all pending
jobs is re-evaluated every cycle to provide a basic level of
robustness to runtime mis-estimation [28]. The sketch of the
scheduling algorithm is as follows.
(1) Translate each job’s resource request to its MILP repre-
sentation.
(2) Aggregate jobs’ demand constraints.
(3) Construct resource capacity constraints.
(4) Construct the aggregate objective function as the sum
of jobs’ individual objective functions, modulated by binary
indicator variables.
(5) Solve the MILP (using an external MILP solver).
(6) Extract job placement results from MILP solution.
(7) Report the scheduling decision to the resource manager.
(8) Dequeue scheduled jobs from the pending queue.

4.3.2 Example. Fig. 5 illustrates the example introduced
in §2.3, where two jobs simultaneously arrive to a single-
node cluster: an SLO job (D) with a 15min deadline and a best
effort (BE) job. Here, we highlight the mechanics of lever-
aging the distribution information to achieve the best job
schedule. In the left column of Fig. 5, we focus on a first sce-
nario, in which both jobs’ expected runtimes are drawn from
a uniform distribution U (0, 10). The right column focuses
on a second scenario, where the jobs’ expected runtimes are
drawn from a uniform distribution U (2.5, 7.5). In scenario 1,
the scheduler picks a schedule that schedules the SLO job,
because it recognizes the risk of it not completing in time
otherwise, while in scenario 2, it schedules the BE job first
since the SLO job is expected to finish in time regardless of
where the runtimes fall within the full distribution. In both
cases, it realizes the right decision by maximizing the overall
expected utility offered by the two pending jobs.
As sketched in §4.3.1, 3σSched first constructs and ag-

gregates the jobs’ expected demand. The key insight is that
this draw on resources over time is probabilistic (Figs. 5(a)
and 5(b)). E.g., with the SLO job scheduled to start at t = 0,
it is expected to consume the cluster node with 100% prob-
ability in the first time slice, and monotonically decreasing
probability < 1 in subsequent time slices. Fig. 5 plots these
probabilities on gray scale from 0 (white: resource not used)
to 1 (black: resource expected to be used with 100% probabil-
ity). We use this grayscale to illustrate the best job schedule
in each of the two scenarios in Fig. 5. Note that the SLO
job meets its 15min deadline in both cases, but is scheduled
first in scenario 1 and second in scenario 2. Expected re-
source consumption is calculated by referring to the inverse
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Figure 5: Job D is an SLO job with a 15min deadline. Job BE
is a BE job. Left column: job runtimes ∼ U (0, 10) (scenario1).
Right column: job runtimes∼ U (2.5, 7.5)with the same µ = 5
(scenario 2). (a) and (b): The final order that yields maximal
utility. The intensity of the black represents the expected
resource consumption at the start of each slot (from 100%
certainty (darkest) to 25% certainty (lightest), in 25% decre-
ments for the scenario 1 and a 50% decrement for the sce-
nario 2. (c) and (d): Inverse CDF (1 −CDF (t)), the probability
of D (blue) and BE (red) jobs completing before t , which is
also the probability of still using the resource at that time.
(e) and (f): SLO job’s expected utility, set to the probability
of the job’s completion by the deadline at each start time in
this example (note: x-axis is different from other subfigs).

CDF (Figs. 5(c) and 5(d)) of each job’s conditional runtime
distribution (§3.2).
As the scheduler constructs and aggregates resource de-

mands from both jobs, it ensures that their sum does not
exceed the expected resource capacity at any given time t
in the plan-ahead window ∈ [0; 20). These declarative con-
straints are automatically generated and added to the MILP
problem instance (as described below). The aggregate utility
for each job, derived from the expected utility curves, forms
the overall objective function to maximize. Figs. 5(e) and 5(f)
show the expected utility curves for the SLO job ("D") in the
two scenarios, respectively, and the BE job’s utility curves
(not shown) are a linearly decaying function with a signifi-
cantly lower maximum value. Figs. 5(a) and 5(b) show the
best outcome for each of the scenarios. Concretely, we ob-
serve that awareness of the runtime distribution allows the
scheduler to determine the likelihood of it being safe to delay
an SLO job (Fig. 5(b)) to minimize the BE job’s latency while
still meeting the SLO job’s deadline.

4.3.3 MILP Formulation. The first step of the algorithm
is to convert all jobs to their MILP representation. This is
done by generating all possible placement options, both over
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different types of resources (space) and over time. 3σSched
minimizes the set of possibilities by adopting the notion of
equivalence sets, introduced in [28]. Equivalence sets are sets
of resources equivalent from the perspective of a given job,
e.g. all nodes with a GPU. 3σSched reasons about these sets
of resources instead of enumerating all possible node combi-
nations. As a result, the complexity of MILP depends on the
number of equivalence sets rather than the cluster size. Thus,
equivalence sets help manage the size of generated MILP
in the space dimension. MILP size in the time dimension is
controlled by the plan-ahead window sched .
A given placement option includes a specification of the

equivalence set, the starting time s ∈ [now ;now + sched],
the estimated runtime distribution, and how many nodes
are requested k . The estimated runtime distribution for a
running job is reconsidered at every scheduling event, based
on how long the job has run so far as described in Eq. 2.
Updates to the runtime distribution changes the scheduler’s
expectation of the jobs’ future resource consumption. This
allows 3σSched to react to mis-estimates, e.g., by re-planning
pending jobs waiting for preferred resources to a different
set of nodes, or preempting lower priority jobs.
Each placement option is associated with a const utility

value obtained by using Eq. 1. The corresponding objective
function for this job becomes a sum of these values modu-
lated by binary indicator decision variables. Namely, given
job j and placement option o, the MILP generator associates
an indicator variable Ijo , adding a constraint that at most
one option is selected for each job: ∀j∑o Ijo ≤ 1. Thus, the
aggregate objective function to maximize is

∑
j
∑
o UjoIjo . A

solution that maximizes this function effectively selects (a)
which jobs to run now, and (b) which placement option o to
pick for selected job j.
This objective function is maximized subject to a set of

auto-generated constraints: capacity and demand constraints.
Demand constraints ensure that (a) the sum of allocations
from different resource partitions [28] is equal to the re-
quested quantity of resources k , and (b) at most one place-
ment option is selected: ∀j∑o Ijo ≤ 1. Capacity constraints
provide the invariant that

∀t ∈ [now ;now + sched]
∑
jo

k · RCj (t − s)Ijo ≤ C(t), (3)

where RCj (t) is the expected resource consumption of job j
at time t (§3.2). This ensures that aggregate allocations do
not exceed the expected available capacity C(t) at time t .

4.3.4 MILP Example. Let’s examine 3σSched’s MILP for-
mulation in detail on the same two job example (Fig. 5).

Scenario 1 (U (0, 10)). First, for each job j, the scheduler
generates indicator variables, Ijt where t ∈ {0, 2.5, ..., 17.5},
that represent whether the job should be scheduled or de-
ferred to each t . The expected utilities of each placement

option is also computed. For the SLO job, the expected utility
is 1 for all placement options with start times t ≤ 5. The
options that start later will have gradually decreasing values,
0.75, 0.5, 0.25, and 0, as the probability of missing the dead-
line increases as a function of time. The expected utilities for
the BE job will be linearly decreasing values over time.
Second, demand and capacity constraints are generated.

A demand constraint
∑

t Ijt ≤ 1 is constructed to ensure
at most one option is selected for each job j. Capacity con-
straints are generated by calculating expected resource con-
sumption for each job. For a job that starts at t = s , the ex-
pected resource consumption at elapsed_time = 0, 2.5, 5, 7.5
is the probability of the job still running and equals 1.0, 0.75,
0.5, 0.25 respectively, zero thereafter.
Third, 3σSched constructs the overall MILP problem by

aggregating per-jobMILP contributions. Demand constraints
are aggregated into the constraints of the problem. Resource
capacity constraints are constructed by aggregating the ex-
pected resource consumption of placement options across
all jobs for each time slot. For example, it is 0.75ISLO ;0 +

1.0ISLO ;2.5 + 0.75IBE ;0 + 1.0IBE ;2.5 ≤ 1 for t = 2.5.
The aggregate objective function is constructed by adding

allUjt Ijt terms, whereUjt is the expected utility of the place-
ment option for job j that starts at t . Examining the ob-
jective function while satisfying the demand and capacity
constraints, 3σSched decides to schedule the SLO job first.
Starting the SLO job at t = 10 would only yield an expected
utility of 0.5, which corresponds to a 50% probability of meet-
ing the deadline. The BE job utility gain would be insufficient
to offset the SLO utility loss.

Scenario 2 (U (2.5, 7.5)). First, all the decision variables
are generated similarly to the scenario 1. The expected utility
is calculated for both jobs. For the SLO job, the expected
utility is 1 for all placement options with start times t ≤ 7.5.
The expected utility of the BE job and the demand constraints
are same as before.
For a job that starts at t = s , the expected resource con-

sumption at elapsed_time = 0, 2.5, 5 is 1.0, 1.0, 0.5 respec-
tively, and zero otherwise.

The aggregate MILP problem is constructed, aggregating
demand constraints, objective functions, and generating ca-
pacity constraints that ensure the sum of aggregate resource
demand does not exceed total resource capacity. This ensures
the second job is deferred to start at t = 7.5.

Examining the objective function while satisfying the de-
mand and capacity constraints, 3σSched decides to schedule
the BE job first and postpones the SLO job, as it is possible
to complete both jobs before the deadline. The aggregate
expected utility reflects that, as it yields the SLO job utility
of 1 when started by t = 7.5 and the highest value for the
BE job when started at t = 0.
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4.3.5 Preemption. In rare cases, 3σSched needs to re-
consider scheduling decisions for currently running jobs. For
example, due to under-estimates, the scheduler may incor-
rectly choose to aggressively postpone SLO jobs to complete
more BE jobs. The scheduler might be able to reschedule if
there are enough resources. However, sometimes the only
way to meet the deadline is to preempt lower-priority jobs
running in the cluster.
Preemption is naturally supported in the existing MILP

generation framework, as it is able to simultaneously con-
sider pending jobs for placement and running jobs for pre-
emption. Thus, the goal of the scheduler is to maximize the
aggregate value of placed jobs, while incurring a cost for pre-
empting jobs. The latter is a

∑
r Pr I

p
r , where I

p
r is an indicator

variable tracking whether to preempt a running job r . Pr is
the preemption cost for the running job r and is configured
by the preemption policy. The overall objective function then
becomes

∑
j,o UjoIjo −

∑
r Pr I

p
r .

The capacity constraint extension, intuitively, credits back
resources associated with preempted jobs:

∑
jo koRCj (t −

s)Ijo ≤ C(t) +
∑

r krRCr (t − e)I
p
r . RCr is the up-to-date ex-

pected resource consumption of the running job r , and e is
the elapsed time of r .

4.3.6 Scalability. Solving MILP is known to be an NP-
hard problem. To minimize the excessive latency caused by
the solver, we apply a number of optimizations. The primary
optimization we perform is seeding each new cycle’s MILP
problem with the solution from the previous cycle. Intu-
itively, the previous cycle’s solution corresponds to leaving
the cluster state unchanged. As such, it represents a feasible
solution. Second, we have empirically found that the solver
spends most of the time validating optimality for the solu-
tion it otherwise quickly finds. Thus, we get near-optimal
performance by querying the solver for the best solution
found within a configurable fraction of its scheduling inter-
val. Third, the plan-ahead window bounds the complexity of
the MILP problem by adjusting the range of time over which
job placements are considered. Fourth, 3σSched performs
some internal pruning of generated MILP expressions, which
include eliminating terms with zero constant.

5 EXPERIMENTAL SETUP
We conduct a series of end-to-end experiments andmicrobench-
marks to evaluate 3Sigma, integratedwithHadoop YARN [29]–
a popular open source cluster scheduling framework. We
find YARN’s support for time-aware reservations and place-
ment decisions and its popularity in enterprise a good fit for
our needs. We implement a proxy scheduler wrapper that
plugs into YARN’s ResourceManager and forwards job re-
source requests asynchronously to 3Sigma. Jobs are modeled
as Mapper-only jobs. We use a synthetic generator based

System Runtime Overestimate
Estimation Handling

3Sigma Real Distributions ADAPTIVE
PointPerfEst Perfect Point Estimates NO
PointRealEst Real Point Estimates NO
Prio N/A N/A

Table 1: Scheduler approaches compared.

on Gridmix 3 to generate Mapper-only jobs that respect the
runtime parameters for arrival time, job count, size, deadline,
and task runtime from the pre-generated trace.

Cluster configurations.We conduct experiments on two
cluster configurations: a 256-node real cluster (RC256) and a
simulated 256-node cluster (SC256). RC256 consists of 257
physical nodes (1 master + 256 slaves in 8 equal racks), each
equipped with 16GB of RAM and a quad-core processor. The
simulations complete in 1

5
th the time on a single node, allow-

ing us to evaluate more configurations and longer workloads.
We also conduct an experiment with a simulated 12,583-node
cluster (GOOGLE) to evaluate 3Sigma’s scalability.

Systems compared.We compare the four scheduler ap-
proaches in Table 1. 3Sigma is our system in which 3σSched
is given real runtime distributions provided by 3σPredict
and uses adaptive overestimate handling. Both PointPerfEst

and PointRealEst use an enhanced version of [28] with under-
estimate handling (§4.2) and preemption (§4.3). It represents
the state-of-the-art in schedulers that rely on point estimates.
This includes Rayon, Morpheus, and TetriSched [4, 13, 28],
enhancedwith the state-of-the-art in techniques for handling
imperfect estimates. PointPerfEst is a hypothetical system in
which the scheduler is given a correct runtime for every in-
coming job. PointRealEst uses point runtime estimates from
3σPredict. Prio is a priority scheduler, giving SLO jobs strict
priority over BE jobs rather than leveraging runtime infor-
mation, which represent schedulers like Borg [33].

Workloads. The bulk of our experiments use workloads
derived from the Google cluster trace [20]. We use a Google
trace-derived workload (termed "E2E") for overall compar-
isons among schedulers as well as workloads that vary in-
dividual workload characteristics (e.g., runtime variation
or cluster load) to explore sensitivities. All workloads are 5
hours in length (~1500 jobs) except for the 2hr E2E (~600 jobs),
used to expedite the experiment in RC256. The E2E workload
is synthetically generated from Google trace characteristics.
We evaluated the quality of estimates (as in §2.1) and con-
firmed that the runtime predictability of the generated work-
load was similar to the original Google trace. In simulation,
we have also obtained similar experimental results by draw-
ing random trace samples from the original instead of using
the E2E workload. To generate a workload, all jobs larger
than 256 nodes were filtered out. The remaining jobs — clus-
tered using k-means clustering on their runtimes. We derive
parameters for the distributions of the job attributes (e.g.,
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runtime and number of tasks) and the probability mass func-
tion of features in each job class. The arrival process used
was exponential with a coefficient of variance of 4 (c2a=4).
We draw jobs from each job class proportionally to the em-
pirical job-class distribution. We also pick job attributes and
features for each job according to the empirical distribution
of attributes and features from the job-class. Each workload
consists of an even mixture of SLO jobs with deadlines and
latency sensitive best effort (BE) jobs. SLO jobs have soft
placement constraints (preferred resources set to a random
75% of the cluster, as observed in the original trace). SLO jobs
run 1.5x longer if scheduled on non-preferred resources.

For the experiment in §6.1, we also use workload HEDGE-
FUND_E2E and MUSTANG_E2E derived from the Hedge-
Fund and Mustang cluster, respectively. For these workloads
we filtered out jobs larger than 256 nodes, but took a 5 hour
segment of the original workload instead of deriving parame-
ters and regenerating based on the distribution. The segment
was randomly selected among many segments that have a
similar load to the E2E workload.

HedgeFund: This workload is collected from two private
computing clusters of a quantitative hedge fund firm. Each
cluster uses an instance of an internally developed scheduler,
run on top of aMesos cluster manager. Theworkload consists
of 3.2 million jobs submitted to two clusters over a nine
month period. The majority of jobs analyze financial data
and there are no long-running services.

Mustang: This workload includes the entire operating
history of the Mustang HPC cluster used for capacity com-
puting at Los Alamos National Laboratory. Entire machines
are allocated to users, in similar fashion to Emulab[10, 34].
The workload consists of 2.1 million jobs submitted within a
period of 61 months (2011 ∼ 2016).

Estimates. Because the experiments are 5-hour windows,
we pre-train 3σPredict before running them to produce steady-
state estimates for 3Sigma and PointRealEst. For the Google
workload, we use a subset of the generated trace for pre-
training and use the rest for our experiments. Only the fea-
tures present in the original trace were used to generate point
and distribution estimates (e.g., job class, the runtime class
membership feature not present in the original trace, was
never used in order to maintain a fair experimental setup).
For other workloads, we pre-train on jobs completed before
the selected 5 hour segment begins.

Workload configurations. For SLO jobs, the deadline
slack is an important consideration. Since the original work-
loads do not include deadline information, we generate dead-
lines for each SLO job as follows. Deadline slack is defined as
(deadline − submissiontime − runtime)/runtime ∗ 100 (i.e.,
a slack of 60% indicates that the scheduler has a window
60% longer than the runtime in which to complete the job).
Tighter deadlines are more challenging for schedulers. By

default, we select each job’s deadline slack randomly from a
set of 4 options: 20%, 40%, 60%, and 80%. These default values
are much smaller than experimented in [28] (which used
slacks of 250% and 300%), matching the finding in [13] that
tighter deadlines are also possible.

Load is a measure of offered work (machine × hours) sub-
mitted to the cluster scheduler as a proportion of cluster
capacity. The nominal offered load is 1.4 (unless specified
otherwise). We first chose the load for SLO jobs as 0.7, ap-
proximating the load offered by production jobs in [21]. We
added equal proportion of BE jobs as to not unfairly bias the
scheduling problem towards SLO jobs and to demonstrate
the behavior of system under stressful conditions.

Note our definition of load is different from effective load,
a ratio of actual resources allocated for all jobs (successful
and not successful) to the cluster capacity. Effective load is
different for each scheduling approach as they make different
allocation decisions, even if the same jobs are injected to the
system. In all experiments and for all scheduling approaches,
the cluster was run close to its space-time capacity.

Success metrics.We use the following goodness metrics
when comparing schedulers. Our primary goal is to minimize
SLO miss rate: the percentage of SLO jobs that miss their
deadline. We also want to measure the total work completed
in machine-hours (goodput), showing how much aggregate
work is completed, since BE goodput and the goodput of
incomplete SLO jobs is not represented by the SLO miss rate.
Finally, we measure mean BE latency—the mean response
time for BE jobs.

6 EXPERIMENTAL RESULTS
This section evaluates 3Sigma, yielding five key takeaways.
First, 3Sigma achieves significant improvement over the
state-of-the-art in SLO miss rate, best-effort job goodput,
and best-effort latency in a fully-integrated real cluster de-
ployment, approaching the performance of the unrealistic
PointPerfEst in SLO miss rate and BE latency. Second, all
of the 3σSched component features are important, as seen
via a piecewise benefit attribution. Third, estimated distri-
butions are beneficial in scheduling even if they are some-
what inaccurate, and such inaccuracies are better handled
by distribution-based scheduling than point-estimate-based
scheduling. Fourth, 3Sigma performs well (i.e., compara-
bly to PointPerfEst) under a variety of conditions, such as
varying cluster load, relative SLO job deadlines, and predic-
tion inaccuracy. Fifth, we show that the 3Sigma components
(3σPredict and 3σSched) can scale to >10000 nodes.

6.1 End-to-end performance
Fig. 6 shows performance results for the four scheduling
systems running on the real cluster (RC256).
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Figure 6: Compares the performance of 3Sigma with other systems in the real cluster. 3Sigma constantly outperforms
PointRealEst and Prio on SLO miss-rate and Goodput while nearly matching PointPerfEst. Cluster:RC256. Workload:E2E
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Figure 7: Compares the performance of 3Sigma with other systems under workloads from different environments in sim-
ulated cluster. 3Sigma constantly outperforms PointRealEst and Prio on SLO miss rate and Goodput while nearly matching
PointPerfEst. The Google workload is 5hr variant of E2E. Cluster:SC256. Workload:E2E, HEDGEFUND_E2E, MUSTANG_E2E

3Sigma is particularly adept at minimizing SLO misses,
our primary objective, and completing more useful work,
approaching PointPerfEst and significantly outperforming
the non-hypothetical systems. 3Sigma performs well, despite
not having the luxury of perfect job runtime knowledge af-
forded to PointPerfEst. It uses historical runtime distributions
to make informed decisions, such as whether to start a job
early to give ample time for it to complete before its deadline,
or to be optimistic and schedule the job closer to the dead-
line. However, 3Sigma is not perfect. It misses a few more
SLO job deadlines than PointPerfEst, and it completes fewer
best-effort jobs because 3σSched preempts more best-effort
jobs to make additional room for SLO jobs for which the
distribution indicates a wider range of possible runtimes for
a job . BE latency is similar across all system.

PointRealEst exhibits much higher SLO miss rates (18%, or
4.0X higher than 3Sigma), and lower goodput (5.4% lower
than 3Sigma), because previous approaches struggle with
realistic prediction error profiles. Because PointRealEst sched-
ules based on only point estimates (instead of complete run-
time distributions) and lacks an explicit overestimate han-
dling policy, it makes less informed decisions and struggles
to handle difficult-to-estimate runtimes (e.g., due to greater
variance for a job type). For underestimated SLO jobs (that

ran shorter in the past on average), PointRealEst is often too
optimistic and starts the job later than it should. For over-
estimated SLO jobs, PointRealEst is often too conservative,
neglecting to schedule SLO jobs which are predicted to not
finish in time, even if cluster resources are available.

Prio misses 12% of SLO job deadlines (2.3x more than
3Sigma). It does not take advantage of any runtime infor-
mation, thereby missing opportunities to wait for preferred
resources or exploit one job’s large deadline slack to start a
tighter deadline job sooner. Prio is better than PointRealEst

in terms of SLO misses but much worse in BE goodput, as
it always prioritizes SLO jobs at the expense of increased
preemption of BE jobs, even when deadline slack makes pre-
emption unnecessary. When the runtime is over-estimated,
PointRealEst may not even attempt to run a job thinking that
it would not complete in time, while Priowill always attempt
to schedule any SLO jobs if there are enough resources.

Simulator experiments. We validate our simulation
setup (SC256) by running the identical workload to that in
experiment in Fig. 6. Similar trends are observed across all
our systems and success metrics. Table 2 shows the small
differences observed for the 12 bars shown in Fig. 6.
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Figure 8: Attribution of Benefit. The lines representing 3Sigma with individual techniques disabled— demonstrating
that all are needed to achieve the best performance. The workload is E2E with a constant deadline slack. Cluster:SC256
Workload:DEADLINE-n where n ∈ [20, 40, 60, 80, 100, 120, 140, 160, 180]

Performance comparison varying workload. Fig. 7
summarizes the performance of the scheduling systems un-
der three different workloads. We observe that the overall
behavior of the schedulers is similar to our observations
in §6.1. For all workloads, 3Sigma outperforms PointRealEst

and Prio, while approximately matching the performance of
PointPerfEst. Surprisingly, for the HedgeFund and Mustang
workloads, 3Sigma slightly outperforms PointPerfEst. This is
possible because, while PointPerfEst does receive perfect run-
time knowledge as jobs arrive, it does not possess knowledge
of future job arrivals (nor do any of the other systems). Con-
sequently, it may make sub-optimal scheduling decisions,
such as starting a SLO job late and not leaving sufficient
resources for future arrivals. 3Sigma also does not possess
knowledge of future job arrivals, but it tends to start SLO
jobs earlier than PointPerfEst when the distribution suggests
likelihood of a runtime longer than the actual runtime.

We also observe that PointRealEst performs poorly on SLO
miss rate across different workloads. Further, miss-rate is
only slightly better for Mustang. This is surprising, as a
much larger portion (compared to other workloads) of jobs
in Mustang have very accurate point estimates (Fig. 2(a)). We
believe PointRealEst still performs poorly as a small number
of the estimates are off by a large margin, adversely affecting
the ability of the scheduler to make informed decision. But,
many of the mis-estimates are associated with small jobs;
consequently, PointRealEst and Prio are able to provide high
goodput despite having high SLO miss-rates.

6.2 Attribution of benefit
3σSched introduces distribution-based scheduling and adap-
tive overestimate handling to robustly address the effects of
runtime uncertainty. This section evaluates the individual

Metric(unit) ∆ SLO miss(%) ∆ goodput(M-Hr) ∆ BE latency(s)
PointPerfEst 0.6784 25.27 7.282

3Sigma 0.2875 27.10 11.08
PointRealEst 2.025 22.83 2.383

Prio 1.853 19.83 12.07

Table 2: Absolute performance difference between
real and simulation experiments. Workload:E2E.

contributions of these techniques. Fig. 8 shows performance
as a function of deadline slack for 3Sigma, PointPerfEst,
PointRealEst, and three versions of 3Sigma, each with a single
technique disabled: 3SigmaNoDist uses point estimates instead
of distributions, 3SigmaNoOE turns off the overestimate han-
dling policy, and 3SigmaNoAdapt turns off just the adaptive
aspect of the policy and uses maximum overestimate han-
dling for every job.

When the scheduler explicitly handles overestimates (com-
pare 3SigmaNoDist to PointRealEst), SLO miss rate decreases
because over-estimated SLO jobs are optimistically allowed
to run, rather than discarding them as soon as they appear to
not have enough time to finish before the deadline. However,
SLOmiss rate for 3SigmaNoDist is still high, because the lack of
distribution awareness obscures which jobs are more likely
to succeed if tried; therefore, 3SigmaNoDist wastes resources
on SLO jobs that won’t finish in time.

Simply using distribution-based scheduling (see, e.g.,
3SigmaNoOE) drops SLO miss rate to the level of PointPerfEst
for most deadline slacks. By considering the variance of job
runtimes, the scheduler can conservatively schedule jobs
with uncertain runtimes and optimistically attempt jobs that
are estimated to have a non-zero probability of completion.
Blindly turning on overestimate handling decreases SLO

miss rates at the lowest deadline slacks (3SigmaNoAdapt). How-
ever, 3SigmaNoAdapt is overly optimistic— even attempting jobs
that would seem impossible given their historical runtimes—
provided there are enough resources for SLO jobs in the
cluster. This over-optimism results in lower BE goodput rela-
tive to 3Sigma’s adaptive approach of enabling overestimate
handling only for a small proportion of the jobs whose dis-
tributions indicate likely success.

6.3 Distribution-based scheduling benefits
This section explores the robustness of 3Sigma to perturba-
tions of the runtime distribution. In this study, for each job
drawn from the E2E workload, we provide 3σSched with a
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length. Cluster:SC256. Workload:E2E
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Figure 10: 3Sigma outperforms others on SLOmisses for a range of loads,matching PointPerfEst closely. All systems prioritize
SLO jobs by sacrificing BE jobs when load spikes. Cluster:SC256, Workload: E2E-LOAD-ℓ where ℓ ∈ [1.0, 1.2, 1.4, 1.6]
synthetically generated distribution instead of the distribu-
tion produced by 3σPredict.
We adjust the synthetic distributions in two dimensions,

corresponding to an off-center mean and different variances.
The former is realized by artificially shifting the entire dis-
tribution by an amount equal to a selected percent differ-
ence between the mean of the distribution and the actual
runtime. The latter is represented by the CoV, which refers
to the ratio of standard deviation to the actual runtime of
the job. For each job, the artificial distribution is ∼ N(µ =
job_runtime ∗ (1 + shi f t), σ = job_runtime ∗CoV ), where
the shift itself is ∼ N(µ = shi f t , σ = 0.1).

Fig. 9 shows the results. Comparing point estimates (point)
and distribution estimates, we observe that it is strictly bet-
ter to use distribution estimates (CoV=x%) than to use point
estimates (point) for scheduling jobs. Even at an artificial
shift= 0.0, where ≈ 70% of estimates are generally accurate
(within ±10% error), using a distribution yields 2X fewer
SLO misses compared to the point estimates. Hence, even a
small proportion of jobs with inaccurate estimates can cause
the scheduler to make mistakes and miss the opportunity

to finish more jobs on time. Comprehending entire distribu-
tions enables the scheduler to reason about uncertainty in
runtimes.
Furthermore, for small artificial shifts (within ±20%), it

is better to have narrower distributions with a smaller CoV.
This is because a wider distribution indicates greater like-
lihood of runtimes that are much shorter and much larger
than the actual runtime. The scheduler is more likely to in-
correctly make risky decision to start some jobs later than
it should and make overly conservative decisions for other
jobs.
However, if the actual runtime is far away from the cen-

ter of the runtime distribution (larger artificial shift), wider
distributions provide a benefit. As the distribution widens,
the scheduler correctly assigns higher expected utility to
scenarios that hedge the risk of runtimes being farther away
from the mean. On the other hand, narrower distributions
suffer more as the artificial shift deviates further from zero.
The likelihood of the job running for the actual runtime de-
creases significantly, and causes the scheduler to discount
the placement options that hedge the associated risks.
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6.4 Sensitivity analyses
Sensitivity to deadline slack. Fig. 8 shows performance
as a function of deadline slack. We make two additional ob-
servations. First, smaller slack makes it harder to meet SLOs
across all policies, due to increased contention for cluster
space-time, leading to higher SLO miss rates. Second, best
effort goodput decreases for all systems, but for different
reasons. As slack increases, PointPerfEst sees more wiggle
room for placement and tries (and completes) more difficult
larger SLO jobs. Since the schedule is optimally packed, it
needs to bump best effort jobs in order to schedule more
SLO jobs. BE goodput of PointRealEst shows similar trends;
PointRealEst tries more over-estimated jobs, since increas-
ing slack reduces the number of seemingly impossible jobs.
3Sigma, on the other hand, was already trying most com-
pletable overestimated jobs, so it sees the smallest decrease
in BE goodput. More of the SLO jobs succeed though.

Sensitivity to load. Fig. 10 shows performance as a func-
tion of load. As load increases, we observe an increase in all
systems’ SLO miss rates due to increased contention for clus-
ter resources. The relative effectiveness of PointPerfEstand
the three realistic scheduling approaches is consistent across
the range. We observe that as the load increases, all systems
increasingly prioritize SLO jobs, decreasing BE goodput. The
gap between the BE goodputs of PointPerfEst and 3Sigma
widens as 3Sigma makes more room for each incoming SLO
job to address its uncertainty about runtimes.

Sensitivity to sample size. Another concern may be:
how is the performance of the scheduler affected by the
number of samples observed per feature (user, job names,
etc.)? To answer this question, we used another modified
version of the E2E workload where we controlled the num-
ber of samples comprising the distributions used by 3Sigma,
drawing those samples from the original distributions. We
also created a version of PointRealEst where the point esti-
mates were derived from the observed samples. In Fig. 11, we
vary the number of samples used from 5 to 100. We observe
that increasing the number of samples from 5 to 25 signifi-
cantly improved performance (for both schedulers), but by
25 samples, the performance of 3Sigma converges to the per-
formance of PointPerfEst. 3Sigma outperforms PointRealEstat
each point and benefits more from additional instances, since
it uses the distribution rather than just the mean. Naturally,
PointPerfEst and Prio are not affected.

6.5 Scalability
This section shows that 3Sigma can handle the additional
complexity from distribution-based scheduling even while
managing more than 12500 nodes and a job submission rate
comparable to the heaviest load observed in the Google clus-
ter trace (3668 jobs per hour).

3Sigma requires more CPU time to make decisions than
not using runtime estimates (e.g., Prio), which can affect
scheduler scalability. Although previous work [4, 28] has
shown that packing cluster space-time using runtime esti-
mates can be sufficiently efficient for 100s to 1000s of nodes,
3Sigma adds sources of overhead not evaluated in such previ-
ous work: (1) latency of 3σPredict at Job Submission (I/O and
computation for looking up the correct group of jobs in the
runtime history database and generating distribution), (2) la-
tency from additional computation (e.g. computing expected
utility and expected resource consumption) to formulate the
bin-packing problem, and (3) increased solver runtime due to
increased complexity of the bin-packing problem at 3σSched.
In this experiment, 3Sigma schedules microbenchmark

workloads, SCALABILITY-n. Each workload consists of n
jobs per hour for 5 hours. The ratio of tasks to job matches
those observed in the Google cluster trace. The load is set
to 0.95. Even under these conditions, the latency of produc-
ing distributions at 3σPredict is negligible (maximum=14ms)
compared to the job runtimes in the trace. 3σPredict main-
tains minimal state for each group of jobs, so the cost of data
retrieval is low. Similar latency is observed for producing
point estimates, since most of the work is the same (accessing
histories and choosing among them).
We also compare the performance of PointRealEst and

3Sigma in Fig. 12. Fig. 12(a) depicts the runtime of each
scheduling cycle, including generation of scheduling op-
tions, evaluation, formulation of the optimization problem,
and execution of the solver. Fig. 12(b) reports the runtime
of the solver. For both systems, the solver execution is a
non-trivial fraction of the scheduling cycle runtime. We ob-
serve that distribution-based scheduling also results in a
moderate increase in worst-case solver time. As noted in
§4.3, distribution-based scheduling induces a moderate in-
crease in the number of constraint terms but does not change
the number of decision variables. Also note that the actual
impact on the solver runtime is upper-bounded by a a solver
timeout parameter, so the impact of solving on scheduling
latency is bounded.

7 SUMMARY
3Sigma’s use of distributions instead of point estimates al-
lows it to exploit job runtime history robustly. Experiments
with trace-derived workloads both on a real 256-node cluster
and in simulation demonstrate that 3Sigma’s distribution-
based scheduling greatly outperforms a state-of-the-art point-
estimate scheduler, approaching the performance of a hypo-
thetical scheduler operating with perfect runtime estimates.
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Figure 11: 3Sigma outperforms others on SLOMisses for a range of runtime variability. 3Sigmamatches PointPerfEst in terms
of SLO misses at the sacrifice of Best Effort goodput. Cluster:SC256. Workload:E2E-SAMPLE-n where n ∈ [5, 10, 25, 50, 75, 100]
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